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Figure 1: We introduce an end-to-end framework for modeling a complete 3D avatar including the hair from a single input image for
real-time rendering. We infer textured meshes for faces and optimized polygonal strips for hair from a partially visible subject. Our avatar
reconstruction includes eyes, teeth, and tongue models and is fully rigged using a combination of blendshapes and joint-based skeleton. Our
flexible and efficient mesh-based hair representation is suitable for a wide range of hairstyles and can be readily integrated into existing
real-time game engines. All the illustrations are rendered in realtime in Unity.

Abstract

We present a fully automatic framework that digitizes a complete
3D head with hair from a single unconstrained image. Our sys-
tem offers a practical and consumer friendly end-to-end solution
for avatar personalization in gaming and social VR applications.
The reconstructed models include secondary components (eyes,
teeth, tongue, etc.) and provide animation-friendly blendshapes
and joint-based rigs. While the generated face is a high-quality
textured mesh, we propose a versatile and efficient polygonal strips
(polystrips) representation for the hair. Polystrips are suitable for
an extremely wide range of hairstyles (short, long, straight, curly,
dreadlocks, etc.) and are compatible with existing game engines
for real-time rendering. In addition to integrating state-of-the-art
advances in facial shape modeling and appearance inference, we
propose a novel single-view hair generation pipeline, based on 3D
model and texture retrieval, shape refinement, and polystrip patch-
ing optimization. The performance of our hairstyle retrieval is
enhanced using a deep convolutional neural network for semanti-
cal hair attribute classification. Our generated models are visually
comparable to state-of-the-art game characters designed by profes-
sional artists. For real-time settings, we demonstrate the flexibility
of polystrips in handling hairstyle variations, as opposed to conven-
tional strand-based representations. We further show the effective-
ness of our approach on a large number of images taken in the wild,
and how compelling avatars can be effortlessly created by anyone.
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1 Introduction

The onset of virtual reality (VR) and its entertainment applications
have highlighted how valuable and captivating the immersion of
alternate universes can be. VR and its democratization have the po-
tential to revolutionize 3D face-to-face communication and social
interactions through compelling digital embodiments of ourselves,
as demonstrated lately with the help of VR head mounted displays
with facial sensing capabilities [Li et al. 2015; Thies et al. 2016b;
Olszewski et al. 2016] or voice-driven technology demonstrated at
Oculus Connect 3. In addition to enabling personalized gaming ex-
periences, faithfully individualized 3D avatars could facilitate nat-
ural telepresence and interactions between remote participants in
virtual worlds, and potentially, one day, displace physical travels.
Meanwhile, companies such as Facebook and Snap are populariz-
ing the use of augmented reality filters to alter selfie videos. Emerg-
ing mobile apps, such as FaceUnity and MyIdol, are exploring the
use of performance-driven virtual avatars for virtual chatting; sev-
eral startups, including Pinscreen [?], itSeez3D, and Loom.ai, are
focusing on their creation.

Recent progress in data-driven methods and deep learning research
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have catalyzed the development of high-quality 3D face modeling
techniques from a single image [Cao et al. 2014b; Thies et al.
2016a; Saito et al. 2017]. Even the generation of realistic strand-
level hair models is possible from an image with minimal human
input [Hu et al. 2015; Chai et al. 2016]. However, despite ef-
forts in real-time simulation [Chai et al. 2014], strand-based rep-
resentations are still very difficult to integrate into game environ-
ments due to their rendering and simulation complexity. Further-
more, strands are not efficient representations for short hairstyles
and ones with highly stochastic structures, such as for curly hair.
Cao et al. [2016] have recently introduced a system that uses a ver-
satile image-based mesh representation, but it requires the usage of
multiple photographs and manual intervention, and the volumetric
structure of hair is not captured. Despite substantial advances in
making avatar creation as easy as possible, the barriers to entry are
still too high for commodity user adoption.

In this paper, we present the first automatic framework that gen-
erates a complete 3D avatar from a single unconstrained image,
using high-quality optimized polygonal strips (polystrips or poly
cards) for real-time hair rendering. By eliminating the need of mul-
tiple photographs and a controlled capture environment, we pro-
vide a practical and consumer-friendly solution for digitizing our-
selves or others, such as celebrities, from any photograph. Our dig-
itized models are fully rigged with intuitive animation controls such
as blendshapes and joint-based skeletons, and can be readily inte-
grated into existing game engines.

We first address the challenge of predicting the 3D shape and
appearance of entire heads from partially visible 2D input data.
We carefully integrate multiple cutting edge techniques into a
comprehensive facial digitization framework. An accurate 3D
face model is estimated using a modified dense analysis-through-
synthesis approach [Thies et al. 2016a] with visibility constraints
on a pre-segmented input image, which is obtained from a convolu-
tional neural network for segmentation [Saito et al. 2016]. Subse-
quently, a complete high-quality facial texture is synthesized using
a deep learning-based inference technique introduced by Saito et
al. [2017].

While a straightforward incorporation of an existing single-view
hair modeling technique is possible [Hu et al. 2015; Chai et al.
2016], we focus on a method that produces highly efficient
polystrips rather than strands. The use of polystrips is particularly
suitable for real-time rendering and integration with existing game
engines. For games, hair models rarely exceed 100K triangles, es-
pecially when a large number of characters need to be on screen
at any given time. With appropriate textures and alpha masks, this
representation also supports for a much larger variety of hairstyles
than strands. Though widely used in cutting edge games (e.g., Un-
charted 4), the creation of visually compelling hair polystrips is
typically associated with a tedious and time-consuming modeling
and texture painting process by skilled artists.

We introduce an automatic hair digitization pipeline for modeling
polystrip-based hairstyles. Critical to reconstructing high-quality
hair meshes are convincing shapes and structures, such as fringes,
which are laid out manually by a modeler. We propose a deep
learning-based framework to first extract semantical hair attributes
that characterizes the input hairstyle. A tractable subset of candi-
date hairstyles with compatible traits is then selected from a large
hair model database. A closest hairstyle is then retrieved from this
hairstyle collection and refined to match the input. Our deep neural
network also identifies hair appearance attributes, that describe the
local structure and styling with the corresponding shading proper-
ties. Though a small set of local hairstyle textures can general-
ize well for different hair models, the associated alpha masks of-
ten introduce severe transparency artifacts and alter the overall look

of the hair model significantly. In production, the crafting of hair
polystrips typically involves a complex iterative design process of
mesh adjustments, UV layout, texturing, as well as polystrip du-
plication and perturbation. To this end, we develop a novel itera-
tive optimization technique for polystrip patching, placement, and
shape refinement based on a scalp visibility metric. For visually
pleasing animations, especially for long hairs, we also rig our hair
model to the head skeleton using inverse distance skinning [Jacob-
son 2014].

We show the effectiveness of our approach on a wide range of sub-
jects and hairstyles, and also demonstrate compelling animations
of our avatars with simulated hair dynamics. The output quality of
our framework is comparable to state-of-the-art game characters,
as well as cutting-edge avatar modeling systems that are based on
multiple input photographs [Ichim et al. 2015; Cao et al. 2016]. The
proposed pipeline also produces superior results than existing com-
mercial single view-based solutions such as Loom.ai and itSeez3D.

Contributions:

• We present a fully automatic framework for complete 3D
avatar modeling and rigging, from a single unconstrained im-
age that is suitable for real-time rendering in game and VR
environments. Our facial digitization pipeline integrates the
latest advances in facial segmentation, shape modeling, and
high-fidelity appearance inference.

• We develop a new single-view hair digitization pipeline that
produces highly efficient and versatile polystrip models. Our
system captures both hair geometry and appearance proper-
ties.

• To ensure high-quality output hair meshes, we present a hair
attributes classification framework based on deep learning.
Furthermore, an iterative optimization algorithm for polystrip
patching is introduced to ensure a flawless scalp coverage and
correct hair shape likeness to the input.

2 Background

Facial Modeling and Capture. Over the past two decades, a
great amount of research has been dedicated to the modeling and
animation of digital faces. We refer to [Parke and Waters 2008]
for a comprehensive introduction and overview. Though artist-
friendly digital modeling tools have significantly evolved over the
years, 3D scanning and performance capture technologies provide
an attractive way to scale content creation and improve realism
through accurate measurements from the physical world. While
expensive and difficult to deploy, sophisticated 3D facial capture
systems [Debevec et al. 2000; Ma et al. 2007; Weise et al. 2009; ?;
Beeler et al. 2010; Bradley et al. 2010; Beeler et al. 2011; Ghosh
et al. 2011] are widely adopted in high-end production and have
proven to be a critical component for creating photoreal digital ac-
tors. Different rigging techniques such as joint-based skeletons,
blendshapes [Li et al. 2010; von der Pahlen et al. 2014], or muscle-
based systems [Terzopoulos and Waters 1990; Sifakis et al. 2005]
have been introduced to ensure intuitive control in facial animation
and high-fidelity retargeting for performance capture. Dedicated
systems for capture, rigging, and animation have also emerged for
the treatment of secondary components such as eyes [Miller and
Pinskiy 2009; Bérard et al. 2016], lips [Garrido et al. 2016b], and
teeth [Wu et al. 2016]. Despite high-fidelity output, these capture
and modeling systems are too complex for mainstream adoption.

The PCA-based linear face models of [Blanz and Vetter 1999]
have laid the foundations for the modern treatment of image-based
3D face modeling, with extensions to multi-view stereo [Blake
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Figure 2: Our single-view avatar creation framework is based on a pipeline that combines both complete face digitization and hair polystrip
digitization—both geometry and appearance are captured.

et al. 2007], large-scale internet pictures [Kemelmacher-Shlizerman
2013; Liang et al. 2016], massive 3D scan datasets [Booth et al.
2016], and the use of shading cues [Kemelmacher-Shlizerman and
Basri 2011]. Blanz and Vetter have demonstrated in their original
work that compelling facial shapes and appearances with consis-
tent parameterization can be extracted reliably from a single input
image. Recent progress in single-view face modeling demonstrate
improved detail reconstruction [Richardson et al. 2016], compo-
nent separation [Kim et al. 2017; Tewari et al. 2017], and manipu-
lation capabilities [Shu et al. 2017] using deep convolutional neu-
ral networks. To handle facial expressions, vector spaces based on
visemes and expressions have been proposed [Blanz et al. 2003],
which led to the development of PCA-based multi-linear face mod-
els [Vlasic et al. 2005] and the popularization of FACS-based blend-
shapes [Cao et al. 2014b]. The low dimensionality and effectiveness
in representing faces have made linear models particularly suitable
for instant 3D face modeling and robust facial performance cap-
ture in monocular settings using depth sensors [Weise et al. 2009;
Weise et al. 2011; Bouaziz et al. 2013; Li et al. 2013; Hsieh et al.
2015], as well as RGB video [Garrido et al. 2013; Shi et al. 2014;
Cao et al. 2014a; Garrido et al. 2016a; Thies et al. 2016a; Saito
et al. 2016]. When modeling a 3D face automatically from an im-
age, sparse 2D facial landmarks [Cootes et al. 2001; Cristinacce and
Cootes 2008; Saragih et al. 2011; Xiong and De la Torre 2013] are
typically used for robust initialization during fitting. State-of-the-
art landmark detection methods achieve impressive efficiency by
using explicit shape regressions [Cao et al. 2013; Ren et al. 2014;
Kazemi and Sullivan 2014].

While linear models can estimate entire head models from a single
view, the resulting textures are typically crude approximations of
the subject, especially in the presence of details such as facial hair,
complex skin tones, and wrinkles. In order to ensure likeness to the
captured subject, existing 3D avatar creation systems often avoid
the use of a purely linear appearance model, but rely on acquisitions
from multiple views to build a more accurate texture map. Ichim
et al. [2015] introduced a comprehensive pipeline for video-based
avatar reconstruction in uncontrolled environments. They first pro-
duce a dense point cloud using multi-view stereo and then estimate
a 3D face model using non-rigid registration. An integrated albedo
texture map is then extracted using a combination of Poisson blend-
ing and light factorization via spherical harmonics. Their method
is limited to a controlled acquisition procedure based on a semi-
circular sweep of a hand-held sensor, and hair modeling is omitted.
Chai et al. [2015] presented a single-view system for high-quality
2.5D depth map reconstruction of a both faces and hair, using struc-

tural hair priors, silhouette, and shading cues. However, their tech-
nique is not suitable for avatars, as a full head cannot be produced
nor animated. More recently, Cao et al. [2016] developed an end-
to-end avatar creation system that can produce compelling face and
hair models based on an image-based mesh representation. While
their system can handle very large variations of hairstyles and also
produce high-quality facial animations with fine-scale details, they
require up to 32 input images and some manual guidance for seg-
mentation and labeling. Instead of a controlled capture procedure
with multiple photographs, we propose a fully automatic system
that only needs a single image as input.

Hair Modeling and Capture. Hair is an essential component of
life-like avatars and CG characters. In studio settings, human hair is
traditionally modeled, simulated, and rendered using sophisticated
design tools [Kim and Neumann 2002; Yuksel et al. 2009; Choe
and Ko 2005; Weng et al. 2013]. We refer to the survey of Ward
et al. [Ward et al. 2006] for an extensive overview. 3D hair capture
techniques, analogous to those used for face capture, have been in-
troduced to digitize hair from physical inputs High-fidelity acquisi-
tion systems typically involve controlled recording sessions, man-
ual assistance, and complex hardware equipments, such as multi-
view stereo cameras [Paris et al. 2008; Jakob et al. 2009; Beeler
et al. 2012; Luo et al. 2013; Echevarria et al. 2014] or even thermal
imaging [Herrera et al. 2012].

Hu et al. [2014a] demonstrated a highly robust multi-view hair
modeling approach using a data-collection of pre-simulated hair
strands, which can fully eliminate the need for manual hair segmen-
tation. Since physically simulated hair strands are used as shape
priors, their method can only handle unconstrained hairstyles. The
same authors later introduced a procedural method for hair patch
generation [Hu et al. 2014b] to handle highly convoluted hairstyles
such as braids. They also proposed a more accessible acquisition
approach based on a single RGB-D camera, that is swept around
the subject. Single-view hair digitization methods have been pio-
neered by Chai et al. [2012; 2013] but rely on high-resolution input
photographs and can only produce the frontal geometry of the hair.
A database-driven approach by Hu et al. [2015] later showed that
the modeling of complete strand-level hairstyles is possible from a
single image, with the help of very few user strokes as guidance.
A similar, but fully automatic approach has been furthered by Chai
et al. [2016] using a larger database for shape retrieval and a deep
learning-technique for hair segmentation. While a wide range of
high-quality hair models can be digitized, many hairstyles with



multiple layers or stochastic structures—such as afros or messy
hair—are difficult to capture and not suitable for strand-based repre-
sentations. Furthermore, strand-based hair models are still difficult
to integrate into real-time game environments, due to their com-
plexity in real-time hair rendering and simulation. We introduce a
new hair digitization framework based on highly efficient and flex-
ible polystrips, which are widely adopted in modern games. Hair
polystrips are more efficient for rendering than hair strands, and
also can also achieve believable volumetric structures through tex-
tures with alpha masks and cut-off techniques as opposed to the
opaque textured mesh representation used by Cao et al. [2016].

3 Avatar Modeling Framework

Our end-to-end pipeline for face and hair digitization is illustrated
in Figure 2. An initial pre-processing step computes pixel-level
segmentation of the face and hair regions. We then produce a fully
rigged avatar based on textured meshes and hair polystrips from this
image. We decouple the digitization of face and hair since they span
entirely different spaces for shape, appearance, and deformation.
While the full head topology of the face is anatomically consistent
between subjects and expressions, the mesh of the hair model will
be unique for each person.

Image Pre-Processing. Segmenting the face and hair regions of
an input image improves the accuracy of the 3D model fitting pro-
cess, as only relevant pixels are used as constraints. It also provides
additional occlusion areas, that need to be completed during texture
reconstruction, especially when the face is covered by hair. For the
hair modeling step, the silhouette of the segmented hair region will
provide important matching cues.

We adopt the real-time and automatic semantic segmentation tech-
nique of [Saito et al. 2016] which uses a two-stream deconvolution
network to predict face and hair regions. This technique produces
accurate and robust pixel-level segmentations for unconstrained
photographs. While the original implementation is designed to pro-
cess face regions, we repurpose the same convolutional neural net-
work to segment hair. In contrast to the image pre-processing step
of [Cao et al. 2016], ours is fully automatic.

To train our convolutional neural network, we collected 9269 im-
ages from the public LFW face dataset [Huang et al. 2007] and pro-
duce the corresponding binary segmentation masks for both faces
and hair via Amazon Mechanical Turk (AMT) as illustrated in Fig-
ure 3. We detect the face in each image using the popular Viola-
Jones face detector [2001] and normalize their positions and scales
to a 128×128 image. To avoid overfitting, we augment the training
dataset with random Gaussian-distributed transformation perturba-
tions and produce 83421 images in total. The standard deviations
are 10◦ for rotations, 5 pixels for translations, and 0.1 for scale, and
the means are 0, 0, and 1.0 respectively. We further use a learning
rate of 0.1, a momentum of 0.9, and weight decay of 0.0005 for
the training. The optimization uses 50, 000 stochastic gradient de-
scent (SGD) iterations which take roughly 10 hours on a machine
with 16GB RAM and NVIDIA GTX Titan X GPU. We refer to
the work of [Saito et al. 2016] for implementation details. Once
trained, the network outputs a multi-class probability map (for face
and hair) from an arbitrary input image. A post-hoc inference algo-
rithm based on dense conditional random field (CRF) [Krähenbühl
and Koltun 2011] is then used to extract the resulting binary mask.
Successful results and failure cases are presented in Figure 3.

Face Digitization. We first fit a PCA-based linear face model for
shape and appearance to the segmented face region. Next, a variant
of the efficient pixel-level analysis-through-synthesis optimization

training data successful results failure cases

Figure 3: Hair segmentation training data, successful results, and
failure cases.

method of [Thies et al. 2016a] is adopted to solve for the PCA co-
efficients of the 3D face model and an initial low-frequency albedo
map. We use our own artist-created head topology (front and back
head) with identity shapes transferred from [Blanz and Vetter 1999]
and expressions from [Cao et al. 2014b]. A visibility constraint is
incorporated into the model fitting process to improve occlusion
handling and non-visible regions. A PCA-based appearance model
is constructed for the textures of the full head, using artist-painted
skin textures in missing regions of the original data samples. We
then infer high-frequency details to the frontal face regions even if
they are not visible in the capture using a feature correlation anal-
ysis approach based on deep neural networks [Saito et al. 2017].
Finally, we eliminate the expression coefficients of our linear face
model to neutralize the face. The resulting model is then trans-
lated and scaled to fit the eye-balls using the average pupillary dis-
tance of an adult human of 66 mm. We then translate and scale
the teeth/gum to fit pre-selected vertices of the mouth region. We
ensure that these secondary components do not intersect the face
using a penetration test for all the FACS expressions of our custom
animation rig.

Hair Digitization. Our hair digitization pipeline produces a hair
mesh model and infers appearance properties for the hair shader.
We first use a state-of-the-art deep convolutional neural network
based on residual learning [He et al. 2016] to extract semantic hair
attributes such as hair length, level of baldness, and the existence
of hairlines and fringes. These hair attributes are compared with a
large hairstyle database containing artist created hair polystrip mod-
els. We then form a reduced hairstyle dataset that only contains
relevant models with compatible hair attributes. We then search
for the closest hairstyle to our input image based on the silhou-
ette of its segmentation and the orientation field of the hair strands.
As the retrieved hairstyle may not match the input exactly, we fur-
ther perform a mesh fitting step to deform the retrieved hairstyle to
the input image using the silhouette and the input orientation field.
We incorporate collision handling between the deformed hair and
the personalized face model to avoid hair meshes intersecting the
face mesh. The classification network for hair attribute classifica-
tion also identifies hair appearance properties for proper rendering
such as hair color, texture and alpha maps, various shader parame-
ters, etc. Polystrip duplication is necessary, since the use of alpha
masks for the hair texture can cause a loss of scalp coverage dur-
ing rendering. Consequently, we iteratively identify the incomplete
hair regions using multi-view visibility map and patch them with
interpolated hair strips. The hair polystrips are alpha blended using
an efficient rendering algorithm based on order-independent trans-
parency with depth peeling [Bavoil and Myers 2008].

Rigging and Animation. Since our linear face model is ex-
pressed by a combination of identity and expression coeffi-
cients [Saito et al. 2017], we can easily obtain the neutral pose.



Using an example-based approach, we can compute the face in-
put’s corresponding FACS-based expressions (including high-level
controls) via transfer from a generic face model [Li et al. 2010].
Our generic face is also equipped with skeleton joints based on lin-
ear blend skinning (LBS) [Parke and Waters 2008]. The face and
secondary components (eyes, teeth, tongue, and gums) also possess
blendshapes. Eye colors (black, brown, blue, and green) are de-
tected using the same deep convolutional neural network used for
hair attribute classification [He et al. 2016] and the appropriate tex-
ture is used. Our model consists of 71 blendshapes, and 16 joints
in total. Our face rig also abstracts the low-level deformation pa-
rameters with a smaller and more intuitive set of high-level controls
as well as manipulation handles. We implemented our rig in both
the animation tool, Autodesk Maya, and the real-time game engine,
Unity. We can rig our hair model directly with the skeleton joints of
the head in order to add a minimal amount of dynamics for simple
head rotations. For more complex hair dynamics, we also demon-
strate a simple real-time physical simulation of our polystrip hair
representation using mass-spring models with rigid body chains and
hair-head collisions [?].

4 Face Digitization

We first build a fully textured head model using a multi-linear
PCA face model. Given a single unconstrained image and the
corresponding segmentation mask, we compute a shape V , a low-
frequency facial albedo map I , a rigid head pose (R, t), a perspec-
tive transformation ΠP (V ) with the camera intrinsic matrix P , and
illumination L, together with high-frequency textures from the vis-
ible skin region. Since the extracted high-frequency texture is in-
complete from a single-view, we infer the complete texture map
using a facial appearance inference method based on deep neural
networks [Saito et al. 2017].

input image without visibility
constraints

without visibility
constraints (uv map)

with visibility
constraints

with visibility
constraints (uv map)

Figure 4: Our facial modeling pipeline with visibility constraints
produces plausible facial textures when there are occlusions such
as hair.

3D Head Modeling. To obtain the unknown parameters χ =
{V, I,R, t, P, L}, we adopt the pipeline of [Thies et al. 2016a]
which is based on morphable face models [Blanz and Vetter 1999]
extended with a PCA-based facial expression model and an efficient
optimization based on pixel color constraints. We further incorpo-
rate pixel-level visibility constraints using our segmentation mask
obtained using the method of [Saito et al. 2016].

We use a multi-linear PCA model to represent the low-frequency
facial albedo I and the facial geometry V with n = 10, 822 vertices
and 21, 510 faces:

V (αid, αexp) = V̄ +Aidαid +Aexpαexp,

I(αal) = Ī +Aalαal.

Here Aid ∈ R3n×40, Aexp ∈ R3n×40, and Aal ∈ R3n×40 are the
basis of a multivariate normal distribution for identity, expression,
and albedo with the corresponding mean: V̄ = V̄id + V̄exp ∈ R3n,
and Ī ∈ R3n, and the corresponding standard deviation: σid ∈

R40, σexp ∈ R40, and σal ∈ R40. Aid, Aal, V̄ , and Ī are based
on the Basel Face Model database [Paysan et al. 2009] and Aexp

is obtained from FaceWarehouse [Cao et al. 2014b]. We assume
Lambertian surface reflectance and approximate the illumination
using second order Spherical Harmonics (SH).

First, we detect 2D facial landmarks fi ∈ F using the method of
Kazemi et al. [Kazemi and Sullivan 2014] in order to initialize the
face fitting by minimizing the following energy:

Elan(χ) =
1

|F|
∑
fi∈F

‖fi −ΠP (RVi + t)‖22.

We further refine the shape and optimize the low-frequency albedo,
as well as the illumination, by minimizing the photometric differ-
ence between the input image and a synthetic face rendering. The
objective function is defined as:

E(χ) = wcEc(χ) + wlanElan(χ) + wregEreg(χ), (1)

with energy term weights wc = 1, wlan = 10, and wreg = 2.5 ×
10−5 for the photo-consistency term Ec, the landmark term Elan,
and the regularization term Ereg . Following [Saito et al. 2017], we
also ensure that the photo-consistency termEc is only evaluated for
visible face regions:

Ec(χ) =
1

|M|
∑
p∈M

‖Cinput(p)− Csynth(p)‖2,

where Cinput is the input image, Csynth the rendered image, and
p ∈ M a visibility pixel given by the facial segmentation mask.
The regularization term Ereg is defined as:

Ereg(χ) =

40∑
i=1

[
(
αid,i

σid,i
)2 + (

αal,i

σal,i
)2
]

+

40∑
i=1

(
αexp,i

σexp,i
)2.

This term encourages the coefficients of the multi-linear model to
conform a normal distribution and reduces the chance to converge
into a local minimum. We use an iteratively reweighted Gauss-
Newton method to minimize the objective function (1) using three
levels of image pyramids. In our experiments, 30, 10, and 3 Gauss-
Newton steps were sufficient for convergence from the coarsest
level to the finest one. After this optimization, a high-frequency
albedo texture is obtained by factoring out the shading component
consisting of the illumination L and the surface normal from the
input image. The resulting texture map is stored in the uv texture
map and used for the high-fidelity texture inference.

Face Texture Reconstruction. After obtaining the low-
frequency albedo map and a partially visible fine-scale texture, we
can infer a complete high-frequency texture map, as shown in Fig-
ure 5, using a deep learning-based transfer technique and a high-
resolution face database [Ma et al. 2015]. The technique has been
recently introduced in [Saito et al. 2017] and is based on the con-
cept of feature correlation analysis using convolutional neural net-
works [Gatys et al. 2016]. Given an input image I and a filter
response F l(I) on the layer l of a convolutional neural network,
the feature correlation can be represented by a normalized Gramian
matrix Gl(I):

Gl(I) =
1

Ml
F l(I)

(
F l(I)

)T
Saito et al. [2017] have found that high-quality facial details (e.g.,
pores, moles, etc.) can be captured and synthesized effectively us-
ing Gramian matrices. Let I0 be the low-frequency texture map



and Ih be the high-frequency albedo map with the corresponding
visibility mask Mh. We aim to represent the desired feature corre-
lation Gh as a convex combination of G(Ii), where I1, ..., Ik are
the high-resolution images in the texture database:

Gl
h =

∑
k

wkG
l(Ik), ∀l s.t.

K∑
k=1

wk = 1.

We compute an optimal blending weight {wk} by minimizing
the difference between the feature correlation of the partial high-
frequency texture Ih and the convex combination of the feature
correlations in the database under the same visibility. This is for-
mulated as the following problem:

min
w

∑
l

∥∥∑
k wkG

l
M(Ik,Mh)−Gl

M(Ih,Mh)
∥∥
F

s.t.
∑K

k=1 wk = 1
wk ≥ 0 ∀k ∈ {1, . . . ,K}

,

(2)

where GM(I,M) is the Gramian Matrix computed from only the
masked region M . This allows us to transfer multi-scale features
of partially visible skin details to the complete texture. We refer
to [Saito et al. 2017] for more detail.

Once the desired Gh is computed, we update the albedo map I so
that the resulting correlation G(I) is similar to Gh, while preserv-
ing the low frequency spatial information F l(I0) (i.e., position of
eye brows, mouth, nose, and eyes):

min
I

∑
l∈LF

∥∥∥F l(I)− F l(I0)
∥∥∥2
F

+ α
∑
l∈LG

∥∥∥Gl(I)−Gh

∥∥∥2
F
, (3)

where LG is a set of high-frequency preserving layers and LF a set
of low-frequency preserving layers in VGG-19 [Simonyan and Zis-
serman 2014]. A weight α balances the influence of high frequency
and low frequency and α = 2000 is used for all our experiments.
Following Gatys et al. [2016], we solve Equation 3 using an L-
BFGS solver. Since only frontal faces are available in the database,
we can only enhance frontal face regions. To obtain a complete
texture, we combine the results with the PCA-based low-frequency
textures of the back of the head using Poisson blending [Pérez et al.
2003].

input image input uv map inferred uv map inferred textured
face model

Figure 5: We produce a complete and high-fidelity texture map
from a partially visible and low resolution subject using a deep
learning-based inference technique.

Secondary Components. To enhance the realism of the recon-
structed avatar, we insert template models for eyes, teeth, gums,
and tongue into the reconstructed head model. The reconstructed
face model is rescaled and translated to fit a standardized pair of
eye balls so that each avatar is aligned as to avoid scale ambiguity
during the single-view reconstruction. The mouth-related template
models are aligned based on pre-selected vertices on the facial tem-
plate model. After the initial alignment, we test for intersections

between the face and the secondary components for each activated
blendshape expression. The secondary models for the mouth re-
gion are then translated by the minimal offset where no intersection
is present. The eye color texture (black, brown, green, blue) is com-
puted using a similar convolutional neural network for semantic at-
tribute inference as the one used for hair color classification. The
input to this network is a cropped image of the face region based on
the bounding box around the 2D landmarks from [Kazemi and Sul-
livan 2014], where non-face regions are set to black and the image
centered between the two eyes.

5 Hair Digitization
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Figure 6: Our hair mesh digitization pipeline.

Hairstyle Database. Starting from the USC-HairSalon database
for 3D hairstyles, introduced in [Hu et al. 2015], and 89 additional
artist created models, we align all the hairstyle samples to the PCA
mean head model V̄ used in Section 4. Inspired by [Chai et al.
2015], we also increase the number of samples in our database
using a combinatorial process, which is necessary to span a suf-
ficiently large variation of hairstyles. While the online model gen-
eration approach of [Hu et al. 2015] is less memory consuming, it
requires some level of user interaction.



To extend the number of models, we first group each sample of
the USC-HairSalon database into 5 clusters via k-means clustering
using the root positions and the strand shapes as in [Wang et al.
2009]. Next, for every pair of hairstyles, we randomly pick a pair
of strands among the cluster centroids and construct a new hairstyle
using these two sampled strands as a guide using the volumetric
combination method introduced in [Hu et al. 2015]. We further
augment our database by flipping each hairstyle w.r.t. the x-axis
plane, forming a total of 100,000 hairstyles.

For each hair model, the set of all particles forms the outer sur-
face of the entire hair by considering each hair strand as a chain
of particles. This surface can be constructed using a signed dis-
tance field obtained by volumetric points samples [Zhu and Brid-
son 2005]. By using the surface normal of this mesh, we compose
close and nearly parallel hair strands into a hair polystrip, which
is a parametric piece-wise linear patch. This thin surface structure
can carry realistic looking textures that provide additional varia-
tions of hair, such as curls, crossings, or thinner tips. Additionally,
the transparency of the texture allows us to see through the over-
lay of different polystrips and provide an efficient way to achieve
volumetric hair renderings.

Luo et al. [2013] proposed a method to group short hair segments
into a ribbon structure. Adopting a similar approach, we start from
the longest hair strand in the hairstyle as the center strand of the
polystrip. By associating the normal of each vertex on the strand
to the closest point on the hair surface, we can expand the cen-
ter strand on both sides of the binormal as well as its opposite di-
rection. We compute the coverage of all hair strands by the cur-
rent polystrip, and continue to expand the polystrip until no more
strands are covered. Once a polystrip is generated, we remove all
the covered strands in the hairstyle, and reinitiate process from the
longest strand in the remaining hair strand subset. Finally, we ob-
tain a complete hair polystrip model, once all the hair strands are
removed from the hairstyle. We refer to [Luo et al. 2013] for more
details.

Hair Attribute Classification. We use 40K images from the
CelebA dataset [Liu et al. 2015] with various hairstyles and col-
lect their hair attributes using AMT (see Table 1 for the list of hair
attributes). Similarly, we manually label all the hair models in our
database using high level semantic attributes. We also actively en-
sure that we have roughly the same quantity of images for each
attribute by resampling the training data.

These annotations are then fed into a state-of-the-art classification
network, ResNet [He et al. 2016], to train multiple classifiers pre-
dicting each hair attribute given an input image. We use the 50-
layer ResNet pre-trained with ImageNet [Deng et al. 2009], and
fine-tune it using our training data under learning rate 10−4, weight
decay 10−4, momentum 0.9, batch size 32, and 90 epochs using the
stochastic gradient descent method. The images are augmented for
the training based on perturbations suggested by He et al. [2016]
(random croppings and variations in brightness, contrast, and satu-
ration).

During test time, input images are resized so that the maximum
width or height is 256, center-cropped to 224 × 224, and fed
into the trained classifiers. Each classifier returns a normalized n-
dimensional vector, where n = 2 for binary attributes and n = m
for m-class attributes. The predictions of all classifiers are then
concatenated into a multi-dimensional descriptor. Nearest neighbor
search is then performed to find the k-closest matching hair with
smallest Euclidean distance in the descriptor space. If the classi-
fier detects a bald head, the following hairstyle matching process is
skipped.

Hairstyle Matching. After obtaining a reduced hair model sub-
set based on the semantic attributes, we compare the segmenta-
tion mask and hair orientations at the pixel level using pre-rendered
thumbnails to retrieve the most similar hairstyle [Chai et al. 2016].
Following Chai et al. [2016], we organize our database as thumb-
nails and adopt the binary edge-based descriptor from [Zitnick
2010] to increase matching efficiency. For each hairstyle in the
database, we pre-render the mask and the orientation map as thumb-
nails from 35 different views, where 7 angles are uniformly sam-
pled in [−π/4, π/4] as yaw and 5 angles in [−π/4, π/4] as pitch.
If the hair segmentation mask has multiple connected components
due to occlusion or if the hair is partially cropped, then the segmen-
tation descriptor may not be reliable; in this case, we find the most
similar hairstyle using the classifiers.

retrieved
hairstyle

deformed
hairstyle

collision
handling

input
image

Figure 7: Our hair mesh fitting pipeline.

Hair Mesh Fitting. In order to match the retrieved model with the
silhouette and orientation of the input, we extend the hair fitting al-
gorithm for strands [Hu et al. 2015; Chai et al. 2016] to the polystrip
meshes. First, we perform spatial deformation in order to fit the hair
model to the personalized head model, using an as-rigid-as-possible
graph-based deformation model [?]. In particular, we represent the
displacement of each vertex on the hair mesh as a linear combina-
tion of the displacements of k-nearest vertices on the head mesh
using the following inversely weighted Gaussian approximation:

dpi =
∑
j∈Ni

(1 + ‖pi − qj‖2 + ‖pi − qj‖22)−1dqj ,

where p and q are vertices on the hair and mean head mesh re-
spectively. This allows the hair model to follow the head defor-
mation without causing intersection. Once the scalp and the hair
mesh is aligned, we compute a smooth warping functionW(·) map-
ping vertices on the 3D model’s silhouette to the closest points
on the input’s 2D silhouette from the camera angle, and deform
each polystrip according to the as-rigid-as-possible warping func-
tion presented in [?]. Then, we deform each polystrip to follow the
input 2D orientation map as described in [Hu et al. 2015; Chai et al.
2016]. Possible intersections between the head and the hair model
due to this deformation are resolved using simple collision handling
via force repulsion [Luo et al. 2013].

input hair model multi-view scalp
visibility map iteration 1 final result

Figure 8: Our iterative optimization algorithm for polystrip patch-
ing.



Polystrip Patching Optimization. With the benefit of having a
low computational overhead, a polystrip-based rendering with a
bump map and an alpha mask produces locally plausible hair ap-
pearance for a wide range of hairstyles. However, such rendering is
prone to a lack of scalp coverage, especially for short hairstyles. We
propose an iterative optimization method to ensure scalp coverage
via patching with minimum increase in the number of triangles.

We measure the coverage by computing the absolute difference be-
tween the alpha map in a model view space with and without hair
transparency from multiple view points (see Figure 8). Regions
with high error expose the scalp surface and need to be covered by
additional hair meshes. Without transparency, all polystrips are ren-
dered with alpha value 1.0. When a hair alpha mask is assigned by
the hair style classification, the polystrips are rendered via order-
independent transparency (OIT), resulting in alpha values of range
[0, 1]. First, we convert the error map into a binary map by thresh-
olding if the error exceeds 0.5, and apply blob detection on the bi-
nary map. Given the blob with highest error, a new polystrip is then
placed to cover the area.

We find the k-closest polystrips to the region with the highest error
and resample two polystrips within this set so that their average
produces a new one that covers this region. We use k = 6 for all
our examples. The two polystrips are re-sampled so that they have
consistent vertex numbers for linear blending. By averaging the
polystrips, we can guarantee that the resulting strips are inside the
convex hull of the hair region. Thus, our method does not violate
the overall hair silhouette after new strips are added. We iterate this
process until the highest error has reached a certain threshold or
when no more scalp region is visible.

straight dreadlock wavy

Figure 9: Example polystrip textures for characterizing high-
frequency structures of different hair types. Each texture atlas con-
tains a 9-uv map for polystrips of different sizes.

Hair Rendering and Textures. We render the resulting hair
polystrip model using a variant of [Sadeghi et al. 2010]. The hair
tangents are directly obtained from the directions of the mesh’s uv
parameterization. We use our classification network to determine
semantic shader parameters, such as the width and the intensity of
the primary and secondary highlights. To approximate the multi-
ple scattering component we add the diffuse term from Kajiya and
Kay [1989]. We perform alpha blending between the hair polystrips
using an order-independent transparency (OIT) algorithm based on
depth peeling.

Our classification network also specifies for each input image the
most similar local hairstyle texture. As illustrated in Figure 9, we
characterize a hairstyle’s local high-frequency structure into differ-
ent categories. These textures are manually designed by an artist
based on pre-categorized images that are also used for training. As
demonstrated in many games, these type of hair textures can rep-
resent a wide range of hair appearances. As different hair types
are associated with custom shaders, some styles may be associated
with a bump map, which is also prepared by the artist.

For the texture lookups, we use a hierarchical UV atlas which de-
pends on the world dimensions of individual hair polystrips after
the deformation step. The polystrip textures are grouped into nine
categories of sizes in a single map. Using multiple texture sizes
for each hair model reduces stretching and compression artifacts in
both U and V directions, and also increases texture variations to a
certain degree.

6 Results

We created fully-rigged 3D avatars with challenging hairstyles and
secondary components for a diverse set of inputs from a wide range
of image sets. Even though the input resolutions are inconsistent,
there is no a-priori knowledge about the scene illumination or in-
trinsic camera parameters, and the subjects within the inputs may
have tilted or partially covered heads with different expressions, we
were still able to produce automatically digitized outputs. We also
processed short and long hairstyles of different local structures in-
cluding straight, wavy, and dreadlock styles. As illustrated in Fig-
ure 10, our proposed framework successfully digitizes textured face
models and reproduces the volumetric appearance of hair, which is
shown from the front and the back. Facial details are faithfully dig-
itized in unseen regions and fully covered hair polystrips can be
reconstructed using our iterative patching optimization algorithm.
Our accompanying video shows several animations produced by a
professional animator using the provided controls of our avatar. We
also demonstrate an avatar animation applications using a real-time
facial performance capture system, as well as the simulated hair
motions of our hair polystrip models using a mass-spring system
based on rigid body chains and hair-head collision (see Figure 13).

Evaluation. We evaluate the robustness of our system and consis-
tency of the reconstruction using a variety of input examples of the
same subject as shown in Figure 11. Our combined facial segmen-
tation [Saito et al. 2016], texture inference [Saito et al. 2017] and
PCA-based shape, appearance, and lighting estimation [Thies et al.
2016a] framework is robust to severe lighting conditions. We can
observe that the visual difference between the reconstructed albedo
map of a same person, captured under contrasting illuminations,
is minimal. We also demonstrate how our linear face model can
discern between a person’s identity and its expression up to some
degree. Our visualization shows the resulting avatar in the neu-
tral pose. While some slightly noticeable dissimilarity in the face
and hair digitization remains, both outputs are plausible. For large
smiles in the input image, the optimized neutral pose can still con-
tain an amused expression.

While traditional hair database retrieval techniques [Hu et al. 2015;
Chai et al. 2016] are effective for strand-based output, our hair
polystrip modeling approach relies on clean mesh structures and
topologies as they are mostly preserved until the end of the pipeline.
As shown in Figure 12, a deep learning-based hair attribute classi-
fication step is critical in avoiding wrong hair types being used dur-
ing retrieval. Table 1 lists a few annotated hair attributes, as well
as their prediction accuracies from the trained network. Although
the predictions are sometimes not accurate due to the lack of train-
ing data, we can still retrieve similar hairstyles which are further
optimized by subsequent steps in the pipeline.

Comparison. We compare our method against several state-of-
the-art facial modeling techniques and avatar creation systems in
Figure 14. Our deep learning-based framework [Saito et al. 2017]
can infer facial textures with more details comparing to linear mor-
phable face models [Blanz and Vetter 1999; Thies et al. 2016a], In
addition to producing high-quality hair models, our generated face
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Figure 10: Our proposed framework successfully generates high-quality and fully rigged avatars from a single input image in the wild. We
demonstrate the effectiveness on a wide range of subjects with different hairstyles. We visualize the face meshes and hair polystrips, as well
as their textured renderings.
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Figure 11: We evaluate the robustness of our framework by validat-
ing the consistency of the output under different capture conditions.
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Figure 12: We assess the importance of our deep learning-based
hair attribute classification.

Figure 13: Real-time hair simulation using a mass-spring system.

attribute possible values accuracy (%)

hair_length long/short/bald 72.5
hair_curve straight/wavy/curly/kinky 76.5

hairline left/right/middle 87.8
fringe full/left/right 91.8

hair_bun 1 bun/2 buns/... 91.4
ponytail 1 tail/2 tails/... 79.2

spiky_hair spiky/not spiky 91.2
shaved_hair fully/partially shaved 81.4

baldness fully bald/receded hair 79.6

Table 1: We train a network to classify the above attributes of
hairstyles, achieving accuracies around 70-90%.

input image [Thies et al. 2016] our method our method (side)

input image [Ichim et al. 2015] our method our method (side)

input image [Cao et al. 2016] our method our method (side)

input image Loom.ai our method our method (side)

input image itSeez3D our method our method (side)

Figure 14: We compare our method with several state-of-the-art
avatar creation systems.

meshes and textures are visually comparable to the video-based re-
construction system of Ichim et al. [2015]. We can also reproduce
similarly compelling avatars as in [Cao et al. 2016], but using only
one out of many of their input images. While their approach is still
associated with some manual labor, our system is fully automatic.

We further compare our polystrip-based results with the state-the-
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Figure 15: We compare our method with the latest single-view hair
modeling technique, AutoHair [Chai et al. 2016].

art single-view hair modeling technique from Chai et al. [2016].
Their methods are constrained to strand-based hairstyles and lose
effectiveness on local features compared to our polystrips method.
While strand-based renderings are typically more realistic, we ar-
gue that our representation is more versatile and suitable for effi-
cient character rendering in highly complex virtual scenes.

Performance. All our experiments are performed using an Intel
Core i7-5930K CPU with 3.5 GHz equipped with a GeForce GTX
Titan X with 12 GB memory. 3D head model reconstruction takes
5 minutes in total, consisting of 0.5 second of face model fitting,
75 s of feature correlation extraction, 14 s of computing the con-
vex blending weight, 172 s of the final synthesis optimization. The
secondary component fitting and facial rigging are done within 1
second. Hair polystrip reconstruction takes less than 1 s to classify
the hair attributes from the input image, less than 1 s to retrieve the
closest exemplar, and 10 s to deform a hairstyle. 5 s are needed to
handle collision. Polystrip patching optimization is done within 1
minute for 2 iterations.

7 Discussion

While single-view digitizations of faces [Cao et al. 2014b; Thies
et al. 2016a; Saito et al. 2017] and hair [Hu et al. 2015; Chai et al.
2016] have been introduced separately, we demonstrate an end-to-
end framework that integrates the automatic computation of both
components. The ability to create complete models from a single
unconstrained image is particularly suitable for consumer use, as
well as for scalable content creation in virtual production. We can
now easily produce animator-friendly models of a person with in-
tuitive blendshapes and joint-based controls, as illustrated in our
examples.

Previous single-view hair reconstruction techniques mostly focus
on the digitization of strand geometry; however, we also infer hair
appearance, taking into account the custom shading properties for
the rendering engine. Even though the digitization of high-quality
strands is possible, the rendering costs involved are significant for
complex multi-character virtual environments. Our focus is to pro-

vide a unified solution for capturing a wide range of hairstyles and
the ability to integrate them into existing real-time game engines
such as Unity. We have shown that polystrips are versatile hair rep-
resentations and suitable for the efficient rendering and animation
of compelling avatars. We also note the importance of rendering
capabilities such as order-independent transparency for producing
convincing looking volumetric hair.

The effectiveness of our methodology is grounded on a careful in-
tegration of state-of-the-art facial shape modeling and texture in-
ference algorithms, as well as a data-driven hair modeling pipeline
for polystrip generation. Several key components, such as segmen-
tation, semantic hair attributes, and eye color recognition, are only
possible due to recent advances in deep learning. Our experiments
also indicate the robustness of our system, where consistent results
of the same subject can be obtained when captured from different
angles, under contrasting lighting conditions, and with different in-
put expressions.

Even in cases where the subject is only partially visible, the image
is of low resolution, and the illumination conditions unknown, we
can obtain high-quality textured meshes of the face and compelling
hair renderings similar to those of characters in recent games. Our
approach is qualitatively comparable to existing avatar creation sys-
tems, which require multiple photographs and manual input [Ichim
et al. 2015; Cao et al. 2016].

While our proposed polystrip optimization algorithm is a critical
component for our automatic avatar digitization framework, we be-
lieve that it can also be a useful tool during the design process of
polystrip-based hair models in general. Once a rough hair mesh
is created, an artist could use this patching optimization instead of
manually duplicating and perturbing with additional polystrips.

Limitations. Due to the ill-posed problem of highly incomplete
input and the low-dimensionality of our linear face models, our
shape models may not be fully accurate and our facial texture in-
ference technique may add details in wrong places. With the dra-
matic progress in deep learning research, we believe that a massive
collection of high-resolution 3D faces in controlled capture settings
could be used to improve the fidelity of our face models, as well as
the performance of shape inference algorithms.

Since only a single input image is used, our face modeling pipeline
transfers a generic FACS-based linear blendshape model to every
subject. In reality these blendshapes would need to be individual-
ized for specific subjects. While it is possible that certain expres-
sions would correlate with the shape of the face, it is most likely
that multiple input images would be necessary to form accurate fa-
cial expression models using optimization techniques as introduced
by Li et al. [2010]. In addition, the accuracy of our hair classifica-
tion network is not 100%; for example, ponytails can be ambigu-
ous. Similar to previous papers, our method would fail to retrieve
the correct hair model when the input hairstyle differs greatly from
those in the database (Figure 16).

We use a simple mass-spring system technique to produce motion
simulation. While the use of hair polystrips is highly efficient and a
reasonable approximation of strand-based models [Hu et al. 2015;
Chai et al. 2016], convincing strand-level simulations [Chai et al.
2014] are not yet possible with our representation.

Though the use of polystrips and textures with alpha masks can cap-
ture the volumetric look of hair as opposed to image-based alterna-
tives [Cao et al. 2016], we cannot digitize props such as headwear
or glasses. Our method would also fail for longer facial hair such
as beards, since our database does not contain these objects. We
believe that adding more object types as samples in our database
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Figure 16: Limitations. Wrong hairstyles can be retrieved due to
incomplete visibility or insufficient hair samples in the database.

could make such inference possible. In addition, our system cur-
rently only captures a single hair color for each subject. More pow-
erful texture analysis and synthesis techniques would be needed to
generate plausible multi-color hairstyles.

Future Work. Since our framework is designed around today’s
real-time rendering environments and facial animation systems, we
are still using commonly used parametric models for faces and hair,
and the results may still look uncanny. In the future, we plan to ex-
plore end-to-end deep learning-based inference methods to generate
more realistic avatars with dynamic textures and more compelling
hair rendering techniques. Research in generative adversarial net-
works are promising directions.
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Face transfer with multilinear models. ACM Trans. Graph. 24, 3
(July), 426–433.

VON DER PAHLEN, J., JIMENEZ, J., DANVOYE, E., DEBEVEC,
P., FYFFE, G., AND ALEXANDER, O. 2014. Digital ira and
beyond: Creating real-time photoreal digital actors. In ACM
SIGGRAPH 2014 Courses, ACM, New York, NY, USA, SIG-
GRAPH ’14, 1:1–1:384.

WANG, L., YU, Y., ZHOU, K., AND GUO, B. 2009. Example-
based hair geometry synthesis. ACM Trans. Graph. 28, 3, 56:1–
56:9.

WARD, K., BERTAILS, F., YONG KIM, T., MARSCHNER, S. R.,
PAULE CANI, M., AND LIN, M. C. 2006. A survey on hair
modeling: styling, simulation, and rendering. In IEEE TRANS-
ACTION ON VISUALIZATION AND COMPUTER GRAPHICS,
213–234.

WEISE, T., LI, H., GOOL, L. V., AND PAULY, M. 2009.
Face/off: Live facial puppetry. In Proceedings of the 2009 ACM
SIGGRAPH/Eurographics Symposium on Computer animation
(Proc. SCA’09), Eurographics Association, ETH Zurich.

WEISE, T., BOUAZIZ, S., LI, H., AND PAULY, M. 2011. Real-
time performance-based facial animation. ACM Transactions on
Graphics (Proceedings SIGGRAPH 2011) 30, 4 (July).

WENG, Y., WANG, L., LI, X., CHAI, M., AND ZHOU, K. 2013.
Hair Interpolation for Portrait Morphing. Computer Graphics
Forum.

WU, C., BRADLEY, D., GARRIDO, P., ZOLLHÖFER, M.,
THEOBALT, C., GROSS, M., AND BEELER, T. 2016. Model-
based teeth reconstruction. ACM Trans. Graph. 35, 6 (Nov.),
220:1–220:13.

XIONG, X., AND DE LA TORRE, F. 2013. Supervised descent
method and its applications to face alignment. In Computer Vi-
sion and Pattern Recognition (CVPR), 2013 IEEE Conference
on, IEEE, 532–539.

YUKSEL, C., SCHAEFER, S., AND KEYSER, J. 2009. Hair
meshes. ACM Trans. Graph. 28, 5 (Dec.), 166:1–166:7.

ZHU, Y., AND BRIDSON, R. 2005. Animating sand as a fluid.
ACM Trans. Graph. 24, 3 (July), 965–972.

ZITNICK, C. L. 2010. Binary coherent edge descriptors. In Pro-
ceedings of the 11th European Conference on Computer Vision:
Part II, ECCV’10, 170–182.


